Acta Cryst. (1973). B29, 1726

Corticostérone C₂₁H₃₀O₄

PAR H. CAMPSTEYN, L. DUPONT ET O. DIDEBERG

Université de Liège au Sart Tilman, Institut de Physique, 4000 Liège, Belgique

ET N. MANDEL

California Institute of Technology, Department of Chemistry, Pasadena, California 91109, U.S.A.

(Reçu le 3 janvier 1973, accepté le 23 mars 1973)

Abstract. Monoclinic, P_{2_1} , a = 8.992 (2), b = 12.293 (2), c = 8.322 (2) Å, $\beta = 97.25^{\circ}$, $C_{21}H_{30}O_4$, M = 346,45, Z = 2, $D_x = 1.259$ (10), $D_m = 1.253$ g.cm⁻³, $\mu = 6.75$ cm⁻¹, m. p. = 182 °C. Torsional angles C(16)–C(17)–C(20)– O(20) and O(20)–C(20)–C(21)–O(21) are -13.56 and 1.87° respectively. Cohesion is due to a hydrogen bond $O(11)-H\cdots O(3) = 2.918$ (4) Å and to van der Waals interactions. Structures of corticosterone and 11-dcsoxycorticosterone are isostructural.

Fig. 1. Configuration de la molécule. Chaque atome (exceptés les H) est représenté par son ellipsoïde thermique à 50 % de probabilité.

Introduction. L'étude de la corticostérone (voir Fig. 1) a été entreprise dans le cadre de nos recherches sur les corticostéroïdes à activité minéralocorticoïde. L'activité du présent composé se situe entre celle de la substance S (Dupont, Dideberg & Campsteyn, 1973) et celle de la 11-desoxycorticostérone (DOC) (Dideberg, Campsteyn & Dupont, 1973).

Les cristaux ont été obtenus par évaporation lente d'une solution de corticostérone dans de l'éthanol; les dimensions du spécimen ayant servi à l'étude radiocristallographique étaient: $0,41 \times 0,31 \times 0,26$ mm. Les intensités ont été mesurées au moyen d'un diffractomètre automatique Hilger et Watts à quatre cercles. Parmi les 1632 réflexions mesurées, 1571 ont été considérées comme observées et introduites dans le processus d'affinement. Le traitement des intensités est identique à celui réalisé dans l'étude de la DOC.

La résolution de la structure a été guidée par l'isotypisme, constaté à partir des clichés de Weissenberg, entre ce composé et la DOC dont la structure a servi de modèle de départ pour l'affinement. L'atome O(11)aunsi que les H ont été localisés par Fourier-différence. La valeur finale du facteur R est de 0,052.

Discussion. Les principaux écarts entre la DOC et la corticostérone résultent de l'addition dans cette der-

Fig. 2. Projection (001) de la structure.

SHORT STRUCTURAL PAPERS

Tableau 1. Coordonnées et paramètres d'agitation thermique ($\times 10^4$)

(a) Atomes non-hydrogènes avec leurs déviations standard.

	x	у	Z	<i>B</i> ₁₁	B_{22}	B ₃₃	B ₂₃	B ₁₃	B_{12}
C(1)	5239 (4)	3203 (0)	11162 (3)	71 (4)	69 (3)	65 (4)	8 (6)	8 (6)	-22(5)
C(2)	6649 (4)	3754 (4)	12075 (4)	73 (4)	80 (3)	79 (4)	-9 (6)	4 (6)	- 19 (6)
C(3)	7937 (4)	3698 (3)	11086 (4)	73 (4)	56 (3)	105 (5)	-4(6)	13 (7)	-14(5)
C(4)	7569 (4)	3796 (4)	9349 (4)	62 (4)	78 (3)	93 (5)	-3(6)	27 (6)	- 14 (6)
C(5)	6165 (4)	3811 (3)	8571 (4)	77 (4)	52 (2)	87 (4)	16 (5)	32 (6)	-7(5)
C(6)	5871 (4)	4036 (3)	6794 (4)	74 (4)	78 (3)	85 (5)	36 (6)	22 (7)	-34(6)
C(7)	4857 (4)	3167 (3)	5930 (4)	84 (4)	68 (3)	70 (4)	7 (6)	38 (7)	0 (5)
C(8)	3382 (3)	3068 (3)	6645 (3)	73 (4)	39 (2)	61 (3)	11 (4)	8 (6)	4 (4)
C(9)	3691 (3)	2856 (3)	8489 (3)	65 (4)	41 (2)	65 (4)	3 (4)	8 (6)	1 (4)
C(10)	4788 (3)	3695 (3)	9449 (3)	52 (3)	50 (2)	69 (4)	6 (5)	16 (6)	4 (4)
C(11)	2259 (4)	2621 (3)	9281 (4)	72 (4)	60 (3)	73 (4)	2 (5)	24 (6)	- 28 (5)
C(12)	1225 (4)	1775 (3)	8325 (4)	83 (4)	58 (3)	78 (4)	10 (5)	4 (7)	- 30 (5)
C(13)	928 (3)	2003 (3)	6504 (4)	74 (4)	40 (2)	76 (4)	-4(5)	-7(6)	-1(4)
C(14)	2462 (4)	2117 (3)	5876 (4)	88 (4)	37 (2)	75 (4)	2 (5)	19 (6)	12 (5)
C(15)	2112 (4)	2048 (4)	4031 (4)	120 (5)	65 (3)	77 (4)	-30 (6)	20 (8)	-1 (6)
C(16)	804 (4)	1251 (4)	3744 (4)	138 (6)	66 (3)	97 (5)	- 51 (6)	15 (8)	- 14 (7)
C(17)	263 (4)	1028 (3)	5416 (4)	116 (5)	41 (2)	105 (4)	-16 (6)	-6(8)	-15 (5)
C(18)	- 57 (4)	3010 (3)	6083 (4)	86 (4)	42 (2)	111 (5)	-12 (5)	9 (7)	10 (5)
C(19)	4148 (4)	4857 (3)	9531 (5)	88 (5)	50 (3)	144 (6)	- 22 (6)	3 (8)	-5(5)
C(20)	- 1409 (4)	899 (3)	5338 (4)	115 (5)	43 (2)	110 (5)	- 26 (5)	- 30 (8)	- 37 (6)
C(21)	- 2042 (5)	429 (5)	6777 (5)	122 (6)	91 (4)	153 (7)	47 (8)	- 15 (10)	- 58 (8)
O(3)	9238 (3)	3630 (3)	11722 (3)	67 (3)	96 (2)	115 (3)	9 (5)	- 17 (5)	-1(5)
0(11)	1478 (3)	3612 (3)	9471 (3)	79 (3)	75 (2)	145 (4)	-71 (5)	70 (6)	-11 (4)
O(20)	-2286 (4)	1146 (4)	4174 (4)	131 (4)	117 (3)	146 (5)	50 (7)	- 74 (7)	- 59 (6)
O(21)	-3597 (4)	322 (4)	6501 (4)	126 (4)	111 (3)	182 (5)	5 (7)	- 16 (8)	- 104 (6)

Tableau 1 (suite)

(b) Atomes hydrogènes avec leurs deviations standard

H(1A)	541 (7)	231 (6)	1089 (8)
H(1B)	455 (7)	321 (6)	1183 (8)
H(2A)	646 (8)	462 (7)	1222 (8)
H(2B)	707 (7)	350 (6)	1324 (8)
H(4)	845 (8)	401 (6)	856 (8)
H(6A)	542 (7)	478 (6)	661 (8)
H(6B)	682 (6)	417 (5)	641 (6)
H(7A)	535 (7)	236 (6)	596 (8)
H(7B)	463 (7)	335 (6)	481 (8)
H(8)	272 (8)	378 (6)	634 (8)
H(9)	424 (3)	219 (2)	850 (3)
H(O11)	60 (13)	359 (12)	1020 (14)
H(11)	260 (8)	223 (6)	1039 (8)
H(12A)	180 (7)	103 (6)	843 (8)
H(12B)	36 (8)	176 (6)	885 (8)
H(14)	296 (7)	145 (6)	623 (8)
H(15A)	173 (7)	270 (6)	342 (8)
H(15B)	299 (6)	180 (5)	346 (6)
H(16A)	114 (10)	62 (9)	330 (11)
H(16B)	1 (12)	132 (11)	284 (13)
H(17)	70 (7)	45 (7)	592 (8)
H(18A)	- 96 (7)	289 (7)	645 (8)
H(18B)	35 (5)	371 (5)	656 (6)
H(18C)	- 34 (8)	313 (6)	484 (8)
H(19A)	340 (7)	489 (6)	1031 (8)
H(19B)	509 (8)	542 (6)	993 (10)
H(19C)	366 (11)	514 (11)	868 (12)
H(21A)	- 170 (12)	-27(11)	711 (14)
H(21B)	- 184 (7)	102 (6)	762 (8)
H(O21)	- 399 (7)	36 (6)	555 (8)

Tableau 2. Longueurs des liaisons intramoléculaires et

déviations standard

C(1) - C(2)	1,549 (5) Å	C(11) - C(12)	1,547 (5)
C(1) - C(10)	1,555 (4)	C(12) - C(13)	1,531 (4)
C(2) - C(3)	1,505 (5)	C(13)-C(14)	1,541 (5)
C(3) - C(4)	1,447 (5)	C(13)-C(17)	1,574 (5)
C(4) - C(5)	1,345 (5)	C(13)-C(18)	1,537 (5)
C(5) - C(6)	1,495 (5)	C(14) - C(15)	1,530 (5)
C(5) - C(10)	1,522 (4)	C(15)-C(16)	1,527 (6)
C(6) - C(7)	1,525 (5)	C(16) - C(17)	1,555 (5)
C(7) - C(8)	1,526 (5)	C(17)-C(20)	1,505 (5)
C(8)—C(9)	1,547 (4)	C(20)-C(21)	1,505 (6)
C(8) - C(14)	1,526 (5)	C(3)—O(3)	1,224 (4)
C(9)C(10)	1,574 (5)	C(11)-O(11)	1,425 (5)
C(9)C(11)	1,546 (4)	C(20)-O(20)	1,208 (5)
C(10)-C(19)	1,545 (5)	C(21)-O(21)	1,394 (6)

Les caracteristiques de la molécule sont reprises dans les Tableaux 1, 2, 3 et 4.* On constate que les principales modifications dans la conformation de la molécule se situent au niveau des méthyles et de l'anneau C. Dans le cycle A, on observe un allongement des liaisons aboutissant à C(1). Le cycle D conserve la configuration de la DOC, caractérisée cette fois par les paramètres $\Delta = -11^{\circ}$ et $\varphi_m = 45.0^{\circ}$ (Altona, Geise & Romers, 1968). Dans le Tableau 5, on trouve les contacts intermoléculaires les plus courts; l'empilement des molécules dans la maille est représenté dans les Figs. 2 et 3.

nière d'un atome d'oxygène en C(11) et de l'apparition d'une liaison hydrogène intermoléculaire O(11)-H \cdots O(3). Cette liaison hydrogène a pour effet d'élever de 40°C la température de fusion (Klyne, 1966) de la corticostérone par rapport à la DOC.

^{*} La liste des facteurs de structure a été deposée au dépôt d'archives de la National Lending Library, Angleterre (Publication Supplémentaire No. 30102). Des copies peuvent être obtenues en s'adressant à: The Executive Secretary, International Union of Crystallography, 13 White Friars, Chester CH11NZ, Angleterre,

Tableau 3. Angles des liaisons intramoléculaires avec leurs déviations standard

112.5 (2)°	C(9) - C(11) - O(11)	109,7 (3)°
110.5(3)	C(12)-C(11)-O(11)	111,1 (3)
116,6 (3)	C(11)-C(12)-C(13)	113,8 (3)
121.8 (3)	C(12)-C(13)-C(14)	107,5 (3)
121,5(3)	C(12) - C(13) - C(17)	115,8 (3)
124.4(3)	C(12)-C(13)-C(18)	113,4 (3)
121.1(3)	C(14) - C(13) - C(17)	99,5 (3)
122.7(3)	C(14) - C(13) - C(18)	111,4 (3)
116.1 (3)	C(17) - C(13) - C(18)	108,4 (3)
110.9 (3)	C(8) - C(14) - C(13)	112,9 (3)
111.7 (3)	C(8) - C(14) - C(15)	119,7 (3)
110.1 (3)	C(13)-C(14)-C(15)	104,9 (3)
110.5 (3)	C(14) - C(15) - C(16)	104,4 (3)
107.9 (3)	C(15)-C(16)-C(17)	107,2 (3)
114.5 (3)	C(13)-C(17)-C(16)	104,0 (3)
113.5 (3)	C(13) - C(17) - C(20)	114,2 (3)
114.1 (3)	C(16)-C(17)-C(20)	113,8 (3)
110.0 (3)	C(17)-C(20)-C(21)	118,8 (3)
106.6 (2)	C(17)-C(20)-O(20)	123,8 (4)
112.0 (3)	C(21)-C(20)-O(20)	117,4 (4)
108.3 (3)	C(20) - C(21) - O(21)	112,2 (4)
105.4 (3)		
114,6 (3)		
	$\begin{array}{c} 112,5 (2)^{\circ} \\ 110,5 (3) \\ 116,6 (3) \\ 121,8 (3) \\ 121,5 (3) \\ 121,5 (3) \\ 124,4 (3) \\ 121,1 (3) \\ 122,7 (3) \\ 116,1 (3) \\ 110,9 (3) \\ 111,7 (3) \\ 110,5 (3) \\ 110,5 (3) \\ 114,5 (3) \\ 114,5 (3) \\ 114,5 (3) \\ 114,5 (3) \\ 114,6 (3) \\ 114,6 (3) \end{array}$	$112,5 (2)^{\circ}$ $C(9)C(11)-O(11)$ $110,5 (3)$ $C(12)-C(11)-O(11)$ $116,6 (3)$ $C(12)-C(13)-C(14)$ $121,8 (3)$ $C(12)-C(13)-C(14)$ $121,5 (3)$ $C(12)-C(13)-C(14)$ $121,5 (3)$ $C(12)-C(13)-C(17)$ $124,4 (3)$ $C(12)-C(13)-C(18)$ $121,1 (3)$ $C(14)-C(13)-C(18)$ $121,1 (3)$ $C(14)-C(13)-C(18)$ $116,1 (3)$ $C(17)-C(13)-C(18)$ $116,1 (3)$ $C(17)-C(13)-C(18)$ $110,9 (3)$ $C(8)C(14)-C(15)$ $110,1 (3)$ $C(13)-C(14)-C(15)$ $110,5 (3)$ $C(13)-C(14)-C(15)$ $110,5 (3)$ $C(13)-C(16)-C(17)$ $114,5 (3)$ $C(13)-C(17)-C(20)$ $114,1 (3)$ $C(16)-C(17)-C(20)$ $114,1 (3)$ $C(17)-C(20)-C(21)$ $106,6 (2)$ $C(17)-C(20)-O(20)$ $112,0 (3)$ $C(21)-C(20)-O(20)$ $112,0 (3)$ $C(20)-C(21)-O(21)$ $105,4 (3)$ $114,6 (3)$

112,6 (3)

Tableau 4. Angles de torsion

C(9) - C(11) - C(12)

Cycle	A	Cycle B		
C(1) - C(2)	−55·6°	C(5)—C(6)	— 55·9°	
C(2) - C(3)	35,6	C(6) - C(7)	56,6	
C(3) - C(4)	-7,6	C(7)—C(8)	- 55,2	
C(4) - C(5)	-1,7	C(8)—C(9)	52,7	
C(5) - C(10)	-18,0	C(9)—C(10)	- 49,0	
C(10)-C(1)	46,1	C(10)-C(5)	50,8	
Cycle	С	Cycle	D	
Cycle C(8)—C(9)	C -53,2°	Cycle C(13)-C(14)	D 44,8°	
Cycle C(8)—C(9) C(9)—C(11)	C -53,2° 47,6	Cycle C(13)-C(14) C(14)-C(15)	D 44,8° - 34,2	
Cycle C(8)—C(9) C(9)—C(11) C(11)–C(12)	C - 53,2° 47,6 - 48,4	Cycle C(13)-C(14) C(14)-C(15) C(15)-C(16)	D 44,8° - 34,2 9,1	
Cycle C(8)—C(9) C(9)—C(11) C(11)–C(12) C(12)–C(13)	C - 53,2° 47,6 - 48,4 54,0	Cycle C(13)-C(14) C(14)-C(15) C(15)-C(16) C(16)-C(17)	D 44,8° - 34,2 9,1 18,5	
Cycle C(8)—C(9) C(9)—C(11) C(11)–C(12) C(12)–C(13) C(13)–C(14)	$C \\ -53,2^{\circ} \\ 47,6 \\ -48,4 \\ 54,0 \\ -62,3$	Cycle C(13)-C(14) C(14)-C(15) C(15)-C(16) C(16)-C(17) C(17)-C(13)	D 44,8° - 34,2 9,1 18,5 - 38,1	

Tableau 5. Distances intermoléculaires inférieures à 3,6 Å

(Pour conventions cf. DOC.)

C(3)—O(11)	1/100	3,610 (4) Å
C(4)—O(11)	1/100	3,510 (4)
C(6)—O(21)	2/001	3,575 (5)
C(7)—O(21)	2/001	3,437 (6)
C(15)–O(3)	1/ <u>101</u>	3,592 (5)
$\begin{array}{c} C(4) & -O(11) \\ C(6) - O(21) \\ C(7) - O(21) \\ C(15) - O(3) \\ C(16) - O(3) \\ C(19) - O(21) \\ C(21) - O(3) \\ O(3) - O(11) \end{array}$	1/100 2/001 2/001 1/T0T 1/T0T 2/002 2/1T2 1/100	3,510 (4) 3,575 (5) 3,437 (6) 3,592 (5) 3,574 (6) 3,448 (6) 3,448 (6) 3,466 (6) 2,918 (4)

Les auteurs remercient Messieurs les Professeurs H. Brasseur et J. Toussaint pour l'intérêt qu'ils ont porté à ce travail ainsi que Mm G. Van den Bossche et M.

Fig. 3. Projection (100) de la structure.

Vermeire pour l'étude préliminaire et la préparatoin de l'échantillon.

Références

- ALTONA, C., GEISE, H. J. & ROMERS, C. (1968). *Tetrahedron*, **24**, 13–32.
- DIDEBERG, O., CAMPSTEYN, H. & DUPONT, L. (1973). Acta Cryst. B29, 103-112.

DUPONT, L., DIDEBERG, O. & CAMPSTEYN, H. (1973). Acta Cryst. B29, 205-214.

KLYNE, W. (1966). La Chimie des Stéroïdes. Paris: GAUTHIER-VILLARS.